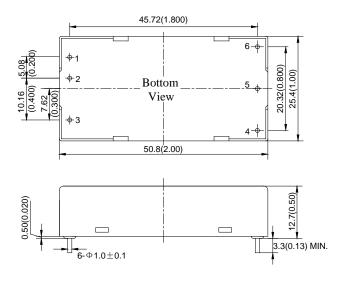
# WLD30-48S12L DC-DC Converter

Input 18V~75V Output 12V/2.5A 1in.×2 in. Industry Standard Size


## **Contents**

| Outline Diagram               | ] |
|-------------------------------|---|
| Features                      |   |
| Specifications                |   |
| Characteristic Curves         | 3 |
| Design Considerations         |   |
| Basic Connection              | ∠ |
| Recommended Layout            | 5 |
| Input Voltage Range           |   |
| External Capacitance          |   |
| Remote Control                | 5 |
| Output Voltage Adjust         | 6 |
| Thermal Consideration         | € |
| Safety Consideration          | 6 |
| EMC Consideration             | 6 |
| Series and Parallel Operation |   |
| Cleaning Notice               | 7 |
| Delivery Package Information  | 7 |
| Quality Statement             | 7 |
| Contact Information           |   |
|                               |   |





# **Outline Diagram**



| Pin Description |        |                         |  |  |  |
|-----------------|--------|-------------------------|--|--|--|
| S/N             | Symbol | Function                |  |  |  |
| 1               | +Vin   | Positive Input Voltage  |  |  |  |
| 2               | -Vin   | Negative Input Voltage  |  |  |  |
| 3               | CNT    | Remote Control Pin      |  |  |  |
| 4               | TRIM   | Output Voltage Adjust   |  |  |  |
| 5               | -Vo    | Negative Output Voltage |  |  |  |
| 6               | $+V_0$ | Positive Output Voltage |  |  |  |

## **Features**

- 1in.×2in. Industry Standard Size (50.8 mm×25.4 mm×12.7 mm)
- ♦ Wide Input Voltage (18V~75V)
- ◆ Positive Logic Control (3.5V~15V turn on)
- Output Voltage Adjust Range:±10 % of the rated output voltage
- Output Short-circuit Protection, hiccup, auto-recovery
- ◆ High Efficiency,87% typ.(Input 48V, full load)
- ♦ 1600Vdc Min. Isolation Voltage
- lacktriangle Operating Case Temp:-40  ${\mathcal C}$  to +105  ${\mathcal C}$
- Applications: Telecom / Datacom system equipments and Railway & Rail transit ,Industrial control equipments and Instrument.

# Notes:

Case material: Aluminum, black; Pin material: brass with gold-plating Notes: all dimensions in mm(inches) Tolerance: X.Xmm:±0.5 (X.XX:±0.020) X.XX mm:±0.25 (X.XXX:±0.010)

Page 1 of 7



# WLD30-48S12L DC-DC Converter

Input  $18V\sim75V$  Output 12V/2.5A 1in.×2 in. Industry Standard Size

# **Specifications**

Unless otherwise specified, all tests are at room temperature and standard atmosphere, pure resistive load.

| Inp               | out                           | Symbol          | Min           | Тур | Max  | Unit | Conditions                                  |   |   |
|-------------------|-------------------------------|-----------------|---------------|-----|------|------|---------------------------------------------|---|---|
| Input V           | Input Voltage V <sub>ii</sub> |                 | Input Voltage |     | 18   | 48   | 75                                          | V | _ |
| Input C           | Current                       | I <sub>in</sub> | -             | _   | 2.00 | A    | $V_{in}=18V$ , $I_{o}=2.5A$                 |   |   |
| Input Idlin       | g Current                     | $I_{in,nl}$     | -             | _   | 30   | mA   | $V_{in}=18V$ , $I_o=0A$                     |   |   |
| D ''              | ON                            | _               | 3.5           | _   | 15.0 | V    | Relative to –Vin; Turn on when CNT floating |   |   |
| Positive<br>Logic | Current                       | _               | ı             | _   | 0.5  | mA   | CNT sink current when turn on               |   |   |
| Remote<br>Control | OFF                           | _               | 0             | _   | 1.5  | V    | Relative to –Vin                            |   |   |
| Control           | Current                       | _               | ı             | _   | 1.0  | mA   | CNT source current when turn off            |   |   |
| Under Voltag      | ge Threshold                  | $V_{UVLO}$      | 14.5          | _   | 17.5 | V    | _                                           |   |   |
| Start-up D        | elay Time                     | $T_{delay}$     | _             | 6   | _    | ms   | _                                           |   |   |

| Ou          | ıtput                  | Symbol                    | Min                        | Тур   | Max             | Unit                 | Conditions                                                     |
|-------------|------------------------|---------------------------|----------------------------|-------|-----------------|----------------------|----------------------------------------------------------------|
| Output      | t Voltage              | $V_{o}$                   | 11.88                      | 12.00 | 12.12           | V                    | _                                                              |
| Output      | Current                | $I_{o}$                   | 0                          | _     | 2.5             | A                    | <del>-</del>                                                   |
| -           | ltage Adjust<br>ange   | $V_{trim}$                | 10.8                       | _     | 13.2            | V                    | P₀≤30W, I₀≤2.5A                                                |
| Line Ro     | egulation              | $S_V$                     | _                          | _     | ±0.2            | % V <sub>O</sub>     | $V_{in}$ : 18V $\sim$ 75V, $I_{o}$ =2.5A                       |
| Load R      | egulation              | $S_{I}$                   | ı                          | _     | ±0.5            | % V <sub>O</sub>     | $V_{in}$ =48V, $I_o$ : 0A $\sim$ 2.5A                          |
| Current Lin | mit Inception          | $I_{o,lim}$               | 110                        | -     | 180             | % I <sub>O,max</sub> | _                                                              |
| Over        | -Shoot                 | V <sub>TO</sub> 0 - 1.2 V |                            | _     |                 |                      |                                                                |
| *           | hort-circuit<br>ection | automatic recovery        |                            |       |                 |                      |                                                                |
|             | k Ripple and oise      | $\triangle V_{pp}$        | $\Delta V_{pp}$ – 100 mV 2 |       | 20MHz bandwidth |                      |                                                                |
| Rise        | Time                   | Trise                     | _                          | 8.0   | _               | ms                   | V <sub>in</sub> =48V ,I <sub>o,max</sub> , Pure resistive load |
| Capacitive  | Load Range             | C <sub>o</sub>            | 0                          | _     | 2200            | μF                   | _                                                              |
| Load        | Recovery<br>Time       | t <sub>tr</sub>           | _                          | _     | 200             | μs                   | Load change: 25% ~ 50% ~                                       |
| Transient   | Voltage<br>Deviation   | $\triangle V_{tr}$        | - 1                        | _     | ±480            | mV                   | 25% & 50%~75%~50%<br>Current change: 0.1A/µs                   |

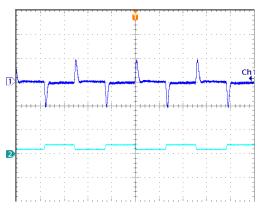
| General                       | Symbol           | Min  | Тур               | Max | Unit       | Conditions                     |
|-------------------------------|------------------|------|-------------------|-----|------------|--------------------------------|
| Efficiency                    | η                | _    | 87                | -   | %          | $V_{in}$ =48 $V$ , $I_{o,max}$ |
| Switching Frequency           | $f_s$            | _    | 290               | -   | kHz        | _                              |
| Isolation Resistance          | R <sub>iso</sub> | 50   | _                 | -   | ΜΩ         | _                              |
| Isolation Voltage             | V <sub>iso</sub> | 1600 | -                 | -   | Vdc        | Input to Output                |
| MTBF                          | _                | _    | 2×10 <sup>6</sup> | _   | h          | BELLCORE TR-332                |
| Operating Case<br>Temperature | _                | -40  | _                 | 105 | $^{\circ}$ | See Natrual Cooling Derating   |

Page 2 of 7



# WLD30-48S12L DC-DC Converter

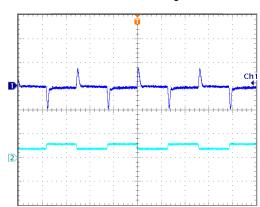
Input  $18V\sim75V$  Output 12V/2.5A 1in.×2 in. Industry Standard Size


## Continue

| General                 | Symbol                                                     | Min | Тур | Max   | Unit                   | Conditions           |
|-------------------------|------------------------------------------------------------|-----|-----|-------|------------------------|----------------------|
| Storage Temperature     | _                                                          | -55 | 1   | 125   | $^{\circ}\!\mathbb{C}$ | _                    |
| Temperature Coefficient | $S_{T}$                                                    | _   | -   | ±0.02 | %/°C                   | _                    |
| Hand Soldering          | Maximum soldering Temperature < 425 °C, and duration < 5s  |     |     |       |                        | C, and duration < 5s |
| Wave Soldering          | Maximum soldering Temperature < 255 °C, and duration < 10s |     |     |       | and duration < 10s     |                      |
| Weight                  | _                                                          |     | 30  | _     | g                      | _                    |

| <b>EMC Specifications</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | St              | Level                                                     |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|---------|
| EMI Conducted Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EN55032         |                                                           | Class A |
| EIVII Conducted Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EN55032         | (See Page 7)                                              | Class B |
| Surge Immunity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IEC/EN61000-4-5 | line to line( $\pm 1 \text{kV}/2\Omega$ );                | A       |
| and the grant of the state of t | GB/T 17626.5    | line to ground( $\pm 1 \text{kV}/12\Omega$ ) (See Page 7) |         |
| Fast Transient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IEC/EN61000-4-4 | ±2kV(5/50ns, 5kHz) (See Page 7)                           | Α       |
| Tast Transient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GB/T 17626.4    |                                                           | Α       |

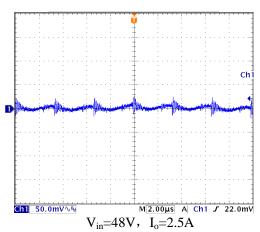
## **Characteristic Curves**


#### **Load Transient Response**

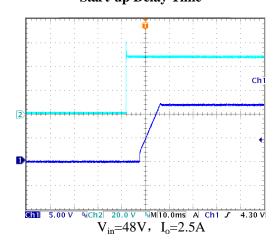


Load change:  $25\% \sim 50\%$  $\sim 25\%$  Io,nom,  $0.1A/\mu s$  $V_{in}=48Vdc$  Trace1: 200mV/div
Trace2: 3A/div

Time scale: 0.4ms/div


#### **Load Transient Response**

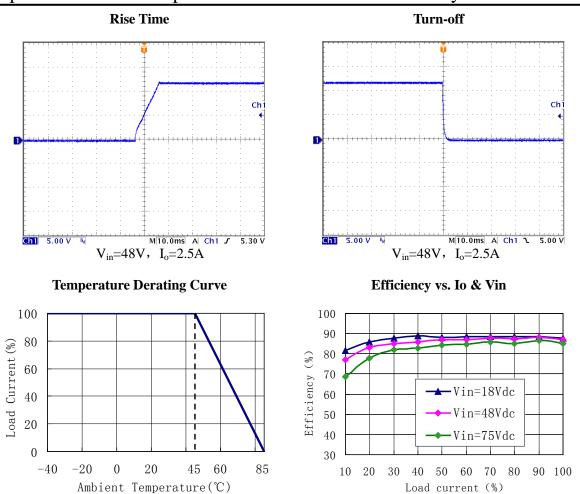



Load change:50%  $\sim$ 75%  $\sim$ 50% Io,nom, 0.1A/ $\mu$ s  $V_{in}$ =48Vdc

Trace1: 200mV/div Trace2: 3A/div Time scale: 0.4ms/div

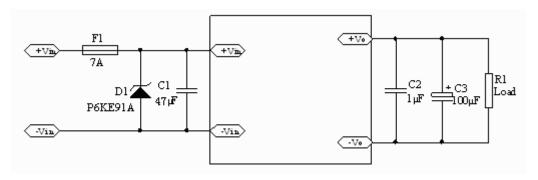
## **Output Ripple**




### **Start-up Delay Time**



Page 3 of 7


# WLD30-48S12L DC-DC Converter

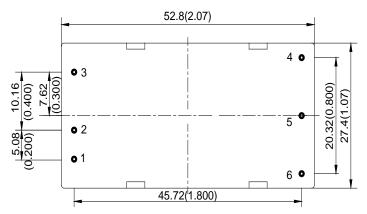
Input 18V~75V Output 12V/2.5A 1in.×2 in. Industry Standard Size



# **Design Considerations**

## **Basic Connection**




Notes: Please see the application information followed for the further information.

Page 4 of 7 7/28/2022

## WLD30-48S12L DC-DC Converter

Input 18V~75V Output 12V/2.5A 1in.×2 in. Industry Standard Size

## **Recommended Layout**



| NO.                | Recommendation & Notes                                                                                                                                            |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Pad Design         | Pad holes 1∼6:1.2mm, pad diameter including hole:2.5mm                                                                                                            |  |  |  |  |  |
| Mounting Direction | heatsink face up, for natural convection                                                                                                                          |  |  |  |  |  |
| Safety             | Isolated Converters, care to the spacing between input and output                                                                                                 |  |  |  |  |  |
| Electrical         | The Vin(-) and Vo(-) planes should be placed under of the converter separately.  Avoid routing sensitive signal or high disturbance AC signal under the converter |  |  |  |  |  |

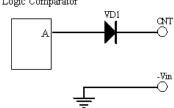
#### **Input Voltage Range**

The input voltage range of the DC/DC converter is  $18V\sim75V$ . The input impedance of the converter looks like a negative resistor, which can interact with the reactance of the power bus (including any filter elements that have been added to the input of the converter), causes an unstable condition.

#### **External Capacitance**

Unless special purpose (i.e. prolonging hold-up time, input impedance matching), the recommended input filter's capacitance ranges  $47\mu F$  to  $220\mu F$ , which not only offers a stable system, and reduces the cost, but also lessens the inrush current when the power supplies.

When larger capacitance is required, a circuit of suppressing the inrush current is recommended when the regulator start-up and a discharge circuit is recommended when the output dropped, ensuring the reliability and safety of other equipments in the system.


#### **Remote Control**

Remote control can be offered by setting right control voltage level (floating , high resistance ) to CNT pin. When the level is higher than 3.5V or be left floating, the converter will turn on. When the level is less than 1.5V, the converter will turn off.

Logic Comparator

WLD30-48S12L is provided with positive logic remote control. The circuit diagram is shown as "Internal Circuit Diagram for Positive Logic Control". when low level applied, the CNT source current is less than 1mA.due to VD1 is signal diode, and the logic comparator is semiconductor integrated chip with low resistance to surge. Care should be taken to prevent CNT from surge, like application of TVS.

In some applications, extra controls will be designed for the converter in user's PCB, such as output short circuit protection, over voltage protection, under voltage protection, synchronous

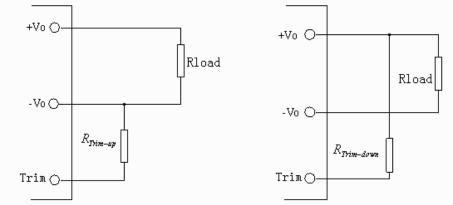


Internal circuit diagram for positive logic control

control to the converter output voltage, and so on, remote control will give you help. The controls can be achieved by external circuit applied to the CNT pin.

When the signal from the system is beyond  $3.5V \sim 15V$ , or it can be enabled only within a very narrow control level, the aux circuit will be required.

Page 5 of 7




#### WLD30-48S12L **DC-DC Converter**

 $\frac{Input\ 18V{\sim}75V\quad Output\ 12V/2.5A}{\textbf{Output\ Voltage\ Adjust}}\quad 1in.{\times}2\ in.\ Industry\ Standard\ Size}$ 

The converters have an Output Voltage adjust pin (Trim). This pin can be used to adjust the output voltage above or below Output voltage initial setting. Output voltage adjust range is  $\pm 10$  % of the rated output voltage. The output power can not exceed 30W at increased output voltages, and the output current can not exceed 2.5A, when the trim pins are not used, they should be floated.

External circuit is connected as the figure shown, the resistance is calculated as the formula below.



**Connection of Trimming Up** 

**Connection for Trimming Down** 

Resistance for trimming up: 
$$R_{Trim-up} = \left(\frac{23.78}{\Delta V - 0.044} - 15\right)(k\Omega)$$

Resistance for trimming down: 
$$R_{Trim-down} = \left(\frac{91.0}{\Delta V + 0.044} - 24.53\right) (k \Omega)$$

Vo: rated output voltage,12V.

 $\Delta V$ : The output voltage change.

 $R_{Trim-up}$ ,  $R_{Trim-down}$ : Resistance for trimming up or down, k $\Omega$ .

#### **Thermal Consideration**

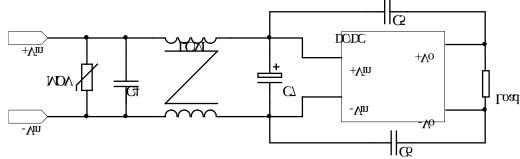
The converters operate in a variety of thermal environments; however, sufficient cooling should be provided to ensure reliable operation of the unit. Heat is removed by conduction, convection and radiation to the surrounding environment.

When ambient temperature is higher than the permitted operating, the derating curves should be referred or external heat dissipation measures. Forced air cooling or heatsink, should be used. The air tunnel should be considered for forced air cooling, to avoid heated air be hindered or forming swirl; when heatsink used, it should be attached the converter closely, through double-side thermal conductivity insulation adhesive or thermal conductivity silicone for heat exchange.

#### **Safety Consideration**

To avoiding fire and be protected when short circuit occurred, it is recommended that a fast blow fuse with rating 2.5 to 3 times of converter's continuous input peak current is used in series at the input terminal. (Inrush current suppression circuit is required for greater filter capacitance at input terminal, or it will result in the misoperation of the fuse ).

#### **EMC Consideration**


#### EN55032 CLASSB recommendation circuit:

Page 6 of 7 7/28/2022



# WLD30-48S12L DC-DC Converter

Input 18V~75V Output 12V/2.5A 1in.×2 in. Industry Standard Size



Parameter description:

| Part No. | Components                  | Part No. | Components |
|----------|-----------------------------|----------|------------|
| MOV      | 101KD14                     | C5       | 2000V/1nF  |
| LCM      | >13mH Common Mode Inductors | C6       | 2000V/1nF  |
| C4       | 100V/1μF                    | C7       | 100V/220μF |

### **Series and Parallel Operation**

The converters should not be paralleled directly to increase power, but they can be paralleled each other through o-ring switches or diodes. Make sure that every converter's maximum load current should not exceed the rated current at anytime if they are paralleled without using external current sharing circuits. The converters can operate in series. To prevent against start-up failure due to start up time difference, SBD with low voltage difference can be paralleled at the output pins(SBD negative terminal connect to the positive pin of the output) for each converter.

## **Cleaning Notice**

The converter case is not a hermetically-sealed construction, a sufficient drying process is required after the converter cleaning, make sure the liquid congregated is removed, or it will damage the converter or degradation of performance. After surface treatment, the appearance of the converter may be affected by the organic solvent, protection measures should be taken before cleaning when appearance is concerned.

# **Delivery Package Information**

Package material is multiple wall corrugated , internal material is anti-static foam, it's surface resistance is from  $10^5\,\Omega$  to  $10^{12}\,\Omega_{\circ}$  Tray capacity:  $2\times16=32$  PCS/box, Tray weight: 1.04kg; Carton capacity: $8\times32=256$  PCS, Carton weight: 9.0kg.

# **Quality Statement**

The converters are manufactured in accordance with ISO 9001 system requirements, in compliant with YD/T1376-2005, and are monitored 100% by auto-testing system, 100% burn in. The warranty for the converters is 5-year.

#### **Contact Information**

Anhui Hesion Trading Co.,Ltd. & Beijing Yihongtai Technology Dev.Co.,Ltd

TEL: +86-551-65369069,65369067 Email: alecz@ahhesion.com Backup:alecz@126.com

www.ahhesionpower.com

Page 7 of 7