

Input 9V-36V, Output 12V/8.33A, Half-Brick Series

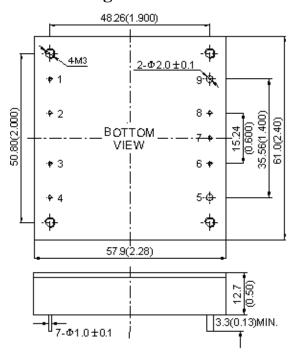
Contents

Features	1
Outline Diagram	2
Specifications	2
Characteristic Curves	4
Design Considerations	5
Basic Connection	5
Recommended Layout	6
Remote Control	6
Output Voltage Adjust	7
Input Voltage Range	7
Remote Sense	
Over Temperature Protection(OTP)	8
Output Over Voltage Protection(OVP)	8
Safety Consideration	8
Series and Parallel Operation	8
Cleaning Notice	9
Delivery Package Information	
Quality Statement	
Contact Information	

Features

- ♦ Half-Brick (61.0mm×57.9mm×12.7mm)
- ◆ CE Certificate, RoHS compliant
- ◆ Positive Logic Control (3.5V to 15V turn on)
- ◆ Output Current Limit Protection(OCP)
- ◆ Output Over Voltage Protection (OVP)
- ◆ Output Voltage Adjust Range:±10 % of the rated output voltage
- ◆ Over Temperature Protection (OTP)
- ◆ Output Short-circuit Protection, hiccup, auto-recovery
- ♦ High efficiency, 87% typ(input:24V I_O,max)
- ◆ 1500Vdc Isolation Voltage(Input to output)
- ◆ Baseplate Temperature :-40°C to 100°C
- ♦ 5-years warranty.
- ◆ Applications: Telecom/ datacom system equipments, Railway & Rail transit ,Industrial control equipments and Instrument

Ordering Information


See Contents for individual product ordering numbers.

see contents for marviadar product ordering numbers.							
Suffix	Meaning	Ordering Model					
	Basic Model	WHD100-24S12					
	Negative Logic Control.						
	Turn off when CNT pin	WHD100-24S12					
	is applied to 3.5~15V						
P	voltage or kept	W HD100-24S12					
	floating; Turn on when	r					
	CNT pin is applied to						
	$0\sim$ 1.5V voltage						

Input 9V-36V, Output 12V/8.33A, Half-Brick Series

Outline Diagram

Pin	Symbol	Function
1	-Vin	Negative Input
2	CASE	Connect to the baseplate
3	CNT	Remote Control Pin
4	+Vin	Positive Input
5	+Vo	Positive output
6	+S	Positive Remote Sense
7	TRIM	Output voltage adjust
8	-S	Negative Remote Sense
9	-Vo	Negative Output

Case material: Black flame retardant Plastic; Pins: copper with gold plating

Aluminum baseplate can be connected to Protective Earth pin by M3 screw.

Notes:all dimensions in mm(inches)

Tolerances: $X.X\pm0.5$ mm($X.XX\pm0.02$)

 $X.XX\pm0.25mm(X.XXX\pm0.010)$

Specifications

Unless otherwise specified, all values are given at: 25°C, one standard atmosphere pressure, pure resistive load and basic connection.

Inpu	ıt	Symbol	Min	Тур	Max	Unit	Conditions
Input Voltage		V_{in}	9	24	36	V	_
Start-up Delay Time		T_{delay}	1	5	Ī	ms	V _{in} :24V,I _{O,max}
Maximum Input Current		I _{in,max}	1	Ī	14.5	A	
Positive Logic	ON	_	3.5	-	15	V	Refer to –Vin
Remote Control	OFF	_	0	_	1.5	V	Also turn on when CNT floating.
Control	Current	_		_	1	mA	

Page 2 of 9 1/18/2022

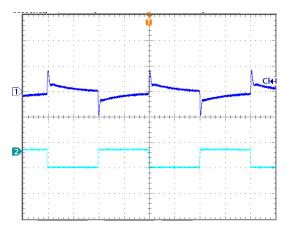
Input 9V-36V, Output 12V/8.33A, Half-Brick Series

Continue

O	utput	Symbol	Min	Тур	Max	Unit	Conditions
Output Power		Po	0	_	100	W	_
Outpu	ıt Voltage	V _o	11.88	12.00	12.12	V	_
Outpu	it Current	I_{o}	1	1	8.33	A	
Current Li	mit Inception	$I_{o,lim}$	9. 16		16.66	Α	V _{in} :24V
-	oltage Adjust ange	V_{trim}	-	_	±10	%V _O	I _o ≤8.33A P _o ≤100W
Line R	legulation	S_{V}	ĺ		±0.2	%V _O	$V_{in}:9V\sim36V,I_{O.max}$
Load F	Regulation	S_{I}	ı	ı	±0.5	$%V_{O}$	$V_{in}:24V,I_0=0.833A\sim8.33A$
Peak to Peak Ripple and Noise		ΔV_{pp}	ı	П	100	mV	20MHz bandwidth, Output equipped 10µF tantalum capacitor and 1µF ceramic capacitor
Load	Recovery Time	t _{tr}	I	I	200	μs	Load change:25% ~50% ~25% & 50% ~75% ~50%
Transient	Transient Voltage Deviation	ΔV_{tr}	_	-	±360	mV	Current change: 0.1A/µs
Capacitive	Capacitive Load Range		0	=	4700	μF	V _{in} :24V,I _{O,max} Pure resistive load
Ris	e Time	Trise		50	_	ms	I _{O,max} , Pure resistive load
Output Overshoot		V_{TO}	_	_	10	%Vo	V _{in} :24V,I _{O,max} Pure resistive load
OVP Set Point		$V_{\text{ov,set}}$	14.4	Ι	18.0	V	P _o ≤100W
OTP Set Point		T_{ref}	115	120	125	°C	Auto-recovery
Output Short-circuit Protection				Hico	cup mode,	, automat	tic recovery

General	Symbol	Min	Тур	Max	Unit	Conditions
Efficiency	η	85	87	I	%	V_{in} :24 V , $I_{O,max}$
Switching Frequency	f_s	_	280	ı	kHz	
Isolation Resistance	R _{iso}	50	ı	ı	ΜΩ	
Isolation Voltage	V _{iso}	1500	I	I	Vdc	Input to output Leak Current: 1mA
		1050	-		Vdc	Input to case Leak Current: 1mA
		500	I	I	Vdc	Output to case Leak Current: 1mA
Operating Baseplate Temperature	_	-40	-	100	လ	
Storage Temperature	_	-55	-	105	°C	_
Temperature Coefficient	S_{T}	1	1	±0.02	%/°C	<u> </u>

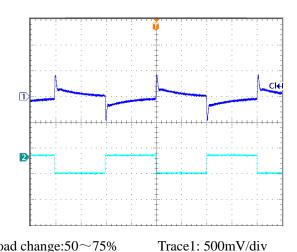
Page 3 of 9



Input 9V-36V, Output 12V/8.33A, Half-Brick Series

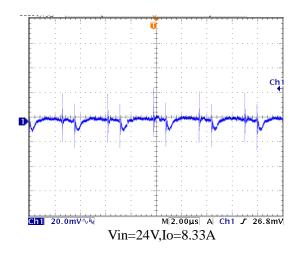
Continue							
General	Symbol	Min	Тур	Max	Unit	Conditions	
MTBF	-	_	1.5×10 ⁶	_	h	BELLCORE TR-332	
Hand Soldering	Ma	Maximum soldering Temperature < 425 °C , and duration < 5s					
Wave Soldering	Maximum soldering Temperature < 255 °C, and duration < 10s						
Weight	-	ı	70	_	g	_	

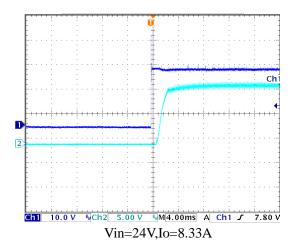
Characteristic Curves


Load Transient Response

Load change: $25\% \sim 50\%$ $\sim 25\%$ Io, max, $0.1 A/\mu s$ Vin=24V Trace1: 500mV/div Trace2: 2.5A/div

Time scale: 2ms/div


Load Transient Response

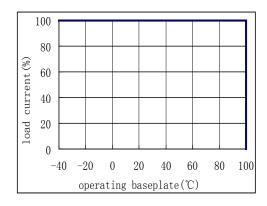

Load change: $50 \sim 75\%$ $\sim 50\%$ Io, max, $0.1 A/\mu s$ Vin=24V

Trace2: 2.5A/div
Time scale: 2ms/div

Output Ripple and noise

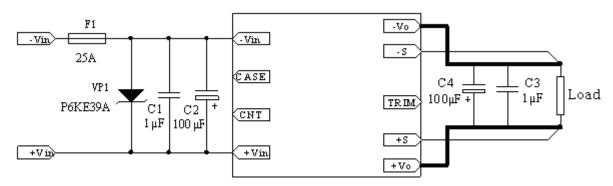
Start-up Delay Time

Page 4 of 9 1/18/2022



Input 9V-36V, Output 12V/8.33A, Half-Brick Series

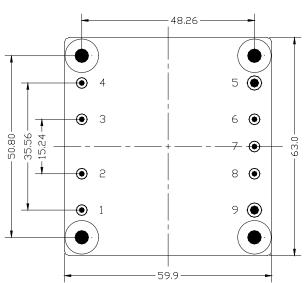
Rise Time Chi S.00 V MA.00ms A Chi J 9.80 V Vin=24V,Io=8.33A


Efficiency vs. Io & Vin 100 90 80 Efficiency (%) 70 −Vin=9Vdc 60 50 -Vin=24Vdc 40 Vin=36Vdc 30 20 10 10 20 30 40 50 60 70 80 90 100 Load Current (%)

Derating

Design Considerations

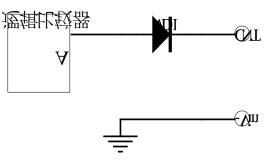
Basic Connection


Notes: The basic connection indicates the basic requirements. Please refer to the instruction followed for further information.

Page 5 of 9 1/18/2022

Input 9V-36V, Output 12V/8.33A, Half-Brick Series

Recommended Layout



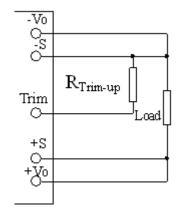
NO.	Recommendation & Notes
Pad Design	1-4、6-8 Pad holes: 1.5mm, pad diameter including hole:2.5mm; 5、9 Pad holes: 2.5mm,pad diameter including hole:4.50mm; the fixed holes at the four corners are metallized, with diameter of 3.3mm and pad diameter including hole: 5.3mm-6.3mm.
Airflow Direction	The air should flow along the direction of the heat sink
Safety	Isolated Converters, care to the spacing between input and output, input and protective ground, output and protective ground.
Electrical	The Vin(-) and Vo(-) planes should be placed under of the converter separately. Avoid routing sensitive signal or high disturbance AC signal under the converter.

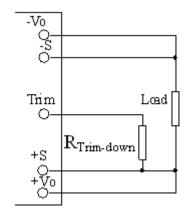
Remote Control

Remote control can be offered by setting right control voltage level (refer to -Vin pin)to CNT pin.

Positive Logic Control: When the level is higher than 3.5V or be left floating, the converter will be on. When the level is less than 1.5V, the converter will be off. The circuit diagram is shown as "internal circuit diagram for positive logic control"; when low level applied, the CNT source current is less than 1Ma, due to VD1 is signal diode, and the logic comparator is semiconductor integrated chip with low resistance to surge. Care should be taken to prevent CNT from surge, A TVS should be used in some cases.

Internal circuit diagram for positive logic control


Page 6 of 9



Input 9V-36V, Output 12V/8.33A, Half-Brick Series

Output Voltage Adjust

The converters have an Output Voltage adjust pin (Trim). This pin can be used to adjust the output voltage above or below Output voltage initial setting. When increasing the output voltage, the voltage at the output pins (including any remote sense offset) must be kept below the maximum output adjust range, or the characteristics will not be assured in compliant with the specification, even the over voltage protection may be triggered. Also note that at increased output voltages the maximum power rating of the converter 100W remains the same, and the output current capability will decrease correspondingly, at decrease output voltages the maximum current should not exceed 8.33A. When the trim pins are not used, they should be floated.

Connection for Trimming Up

Connection of Trimming Down

External circuit is connected as the figure shown, the resistance is calculated as the formula below, please note that the formula will be invalid when $R_{Trim-up}$, $R_{Trim-down}$ are used simultaneously, users adjust the value based on the resistance applied.

Resistance for trimming up:
$$R_{Trim-up} = \left(\frac{23.83}{\Delta V} - 15\right) (k\Omega)$$

Resistance for trimming down:
$$R_{Trim-down} = \left(\frac{(V_o - \Delta V - 2.5) \times 9.53}{\Delta V} - 15\right) (k\Omega)$$

Vo: rated The output voltage you need,V;

 $R_{\textit{Trim-up}}$, $R_{\textit{Trim-down}}$: Resistance for trimming up or down, $k\Omega$;

Input Voltage Range

The input voltage range of the DC/DC converter is $9V\sim36V$. The input impedance of the converter looks like a negative resistor, which can interact with the reactance of the power bus (including any filter elements that have been added to the input of the converter), causes an unstable condition. Depending on the internal transformer's impedance, the external impedance usually should not exceed the 10% of the internal.

Page 7 of 9 1/18/2022

Input 9V-36V, Output 12V/8.33A, Half-Brick Series

Remote Sense

The remote sense can be used to compensate for the voltage drop between the output pins of the converter and the load input pins by +S, -S pins. The +S and -S pins should be connected to the input pins of the load respectively. The remote sense circuit will compensate for up to 0.5V drop between the sense voltage and the voltage at the output pins. If the remote sense is not needed, the -S should be connected to +V0 and +S should be connected to +V0.

The anti-interference design should be considered when the $+S_{\sim}$ -S pins are connected to the pins to be compensated. The $+S_{\sim}$ -S traces should be located close to a ground trace or ground plane, and the area they surrounded should be minimized (just for electrical isolation); If cable connection presents, twisted pair wires should be used, EMI core are equipped with the twisted pair wires to reduce common mode noise when necessary, the sense leads should not be longer than 200mm,or the system characteristics may not be assured.

The sense leads only can carry very little current, and are not used for converter power output. Care should be taken in operation to avoid damaging the converter.

Over Temperature Protection(OTP)

The regulators are protected from thermal overload by an internal over temperature shutdown circuit. When the baseplate temperature exceeds the temperature trig point, the OTP circuit will cut down output power. The regulator will stop until safe operating temperature is restared. Hysteresis temperature between OTP trig point and restart is approx 10°C. Time between OTP and restart is dependent on cooling of the regulator.

Output Over Voltage Protection(OVP)

The clamp type over voltage protection feature is used to protect the converter, when output voltage exceeds 120% to140% of the rated output voltage (the set point is between 115%-140%, there is the difference based on the specific parameters, but not beyond the range), the output voltage will clamped.

Safety Consideration

The converter, as one component for the end user, should be installed into the equipment, and all the safety considerations are achieved under certain condition. It is required to meet safety requirements in system design for the user. The converter input is considered TNV2, the primary to secondary is basic insulation to EN60950. The maximum operating temperature for PCB is 130 °C.

To avoid fire and be protected when short circuit occurred, it is recommended that a fast blow fuse with rating 2 -3 times of converter continuous input peak current is used in series at the input terminal. (Inrush current suppression circuit is required for greater filter capacitance at input terminal, or it will result in the misoperation of the fuse).

Series and Parallel Operation

The converters should not be paralleled directly to increase power, but they can be paralleled each other through o-ring switches or diodes. Make sure that every converter's maximum load current should not exceed the rated current at anytime, if they are paralleled without using external current sharing circuits. The converters can operate in series. To prevent against start-up failure due to start up time difference,

Page 8 of 9 1/18/2022

Input 9V-36V, Output 12V/8.33A, Half-Brick Series

SBD with low voltage difference can be paralleled at the output pins(SBD negative terminal connect to the positive pin of the output) for each converter.

Cleaning Notice

The converter is suitable for water washing, because it does not have any pockets where water could be trapped long-term. Users should ensure that the drying process is adequate and of sufficient duration to remove all water from the converter after washing, do not power up the unit until it is completely dry.

Delivery Package Information

Package material is multiple wall corrugated , internal material is anti-static foam, it's surface resistance is from $10^5~\Omega$ to $10^{12}~\Omega$. Tray capacity: $2\times 6=12~PCS/box$, Tray weight: 0.94kg; Carton capacity: $15\times 12=180~PCS$, Carton weight: 14.6kg.

Quality Statement

The converters are manufactured in accordance with ISO-9001 system requirements, in compliant with YD/T1376-2005, and are monitored 100% by auto-testing system, 100% burn in.

The warranty for the converters is 5-year.

Contact Information

Anhui Hesion Trading Co.,Ltd.
Beijing Yihongtai Technology Dev.Co.,Ltd

TEL: +86-551-65369069,65369067

FAX:+86-551-65369070

Email: <u>alecz@ahhesion.com</u>
Backup:alecz@126.com

Page 9 of 9 1/18/2022